Es wird wohl kaum ein technischer Fortschritt so misstrauisch beäugt wie die Digitalisierung in der Medizin. Dabei geht es gar nicht darum, den Arzt durch ein Computersystem zu ersetzen. Künstliche Inelligenz kann aber Medizinern helfen, schneller und genauer Diagnosen zu erstellen. Und auch in der Medikamentenforschung kann die KI wahre Wunder vollbringen. Deshalb betrachten wir in dieser Folge unser Digitalisierungs-Serie, welche Rolle KI in der Medizin spielen kann.
Aufmacherbild: Mart Productions via Pexels
Roboter, die operieren, Schnittstellen, die eine Verbindung zwischen Gehirn und Computer herstellen oder Ärzte, die nur noch aus der Ferne praktizieren: Diese Vorstellung von Digitalisierung in der Medizin klingt für manchen erschreckend und weckt Misstrauen. Schaut man aber genauer hin, dann ist der Trend zur Digitalisierung auch in diesem Bereich keineswegs neu. Und auch nicht unbedingt erschreckend.
Seit Jahren etwa werden Röntgenbilder digitalisiert, Krankenakten in Computern gespeichert oder Laborergebnisse als digitale Daten abgelegt. Insbesondere in der bildgebenden Diagnostik, zu der neben dem klassischen Röntgen auch etwa die Sonographie oder die Magnetresonanztomographie gehören, entstehen riesige Datenarchive. Mit ihrer Hilfe wollen Forscher die Krankheitserkennung revolutionieren. Das Zauberwort hierfür heißt künstliche Intelligenz: Digitale Lösungen, die diese voluminösen Archive ordnen und darin Muster finden können.
KI lernt aus Tausenden von Fällen
Die Diagnose von Krankheiten gehört in der Medizin oft zu den schwierigsten Fragestellungen. Ärzte brauchen hierfür eine umfangreiche Ausbildung und oft auch einen enormen Erfahrungsschatz. Auch Machine-Learning-Algorithmen können Erfahrungen sammeln und selbständig lernen, bestimmte Krankheitsmuster zu erkennen. Die Grundlage ihrer Entscheidung sind Tausende von Fällen, mit denen sie ständig gefüttert werden – deutlich mehr, als je ein einzelner Arzt zu Gesicht bekommen wird. Deshalb sind KI-Systeme für die Diagnostik prädestiniert: Sie ermüden nicht, arbeiten Bild für Bild standardisiert durch und zeigen auch keine Emotionen. Und vor allem verbessern sie als lernende Systeme ständig die diagnostische Qualität. Dabei ist selbst diese Idee nicht neu: Es gibt sie bereits seit Jahrzehnten. Doch erst in den letzten Jahren ist die verfügbare Rechenleistung so gestiegen, dass Computer dieser Aufgabe auch gewachsen sind.

Diagnosen der KI sind oft besser als die von Ärzten
Der Anstieg bei der Leistungsfähigkeit bringt auch einen Zuwachs bei der Sicherheit der maschinell erstellten Diagnosen. Dies ist mittlerweile vielfach wissenschaftlich belegt, etwa durch die Studie „Sherlock in Health“ von PwC . Die Studie, die sich mit der automatisierten Hautkrebserkennung beschäftigt, bescheinigte den Algorithmen sogar deutlich bessere Leistungen als den menschlichen Ärzten. Zielsetzung war die Diagnose von Hautkrebs auf Basis von dermatoskopischen Bildern der sieben häufigsten pigmentierten Hautveränderungen. Dazu verglich die Studie die Leistungen von 511 Medizinern aus 63 Ländern mit 139 Computeralgorithmen.
Die PwC-Studie ist nicht die einzige Untersuchung, die die Überlegenheit von KI in der Diagnostik belegt. An der Universität Stanford in den USA konnte gezeigt werden, dass ein Algorithmus 14 Erkrankungen der Lunge und des Brustkorbs besser erkennen konnte als Radiologen. An der Universität von Yokohama in Japan haben Ärzte endoskopische Videoaufnahmen von Darmspiegelungen mithilfe von KI-Systemen ausgewertet. Dabei konnten sie bösartige Polypen fast genauso sicher erkennen wie nach einer pathologischen Untersuchung.
Künstliche Intelligenz bereits im Einsatz
Auch wenn Künstliche Intelligenz noch relativ selten in der Medizin zu finden ist, sind doch einige Systeme bereits im Einsatz. Am Massachusetts General Hospital in Boston etwa wird künstliche Intelligenz bei der Analyse von Röntgenaufnahmen der Brust eingesetzt. Und in Deutschland ist das Melanom-Diagnosesystem der Universität Heidelberg in Dutzenden Arztpraxen in Verwendung.
KI-Systeme sind oft nicht nur treffsicherer als die menschlichen Diagnostiker, sie sind in der Regel auch billiger als traditionelle Methoden. Und sie sind vor allem ortsunabhängig. Deshalb gelten sie auch als Hoffnungsträger für Staaten mit eher unterentwickelten Gesundheitssystemen – damit auch sie zukünftig eine Teilhabe an neuesten wissenschaftlichen Entwicklungen bekommen.
Medikamentenentwicklung: KI bringt auch hier Ordnung ins Datenchaos
Neben der Diagnostik ist auch die teure und zeitraubende Medikamentenforschung ein sehr vielversprechendes Anwendungsgebiet für Künstliche Intelligenz. Sie hilft hier vor allem, Geld und Zeit zu sparen. Das beginnt bereits beim ersten Schritt – bei dem es gilt, ein Verständnis für den biologischen Ursprung der Krankheit sowie ihrer Resistenzmechanismen zu entwickeln. Darauf aufbauend müssen sogenannte Targets für die Behandlung der Krankheit gefunden werden. Dafür gibt es standardisierte Verfahren wie Short Hairpin RNA (shRNA), Screening oder Deep Sequencing. Bei diesen Untersuchungen werden mit vielen Tausenden von Substanzen biochemische, genetische und pharmakologische Tests durchgeführt. Doch dabei entsteht eine fast unüberschaubare Menge an Datensätzen. Machine Learning Systeme können diesen Datenwust ordnen und darin Muster erkennen.

In Stufe 2 der Arzneimittelentwicklung muss eine geeignete Verbindung gefunden werden, die mit dem identifizierten Zielmolekül in der gewünschten Weise interagiert. Auch hier muss eine enorme Anzahl potenzieller Verbindungen auf ihre Wirkung und vor allem auch auf ihre Nebenwirkungen untersucht werden. Bei dieser Aufgabe lässt sich durch eine KI am meisten Zeit und Geld sparen. Denn Machine-Learning-Systeme sind in der Lage, Millionen von Zielmolekülen zu analysieren und zu beurteilen. Durch einen Trial-and-Error Prozess lassen sich immer bessere Moleküle mit größerer Wirkung und geringeren Nebenwirkungen finden.
KI findet Testpersonen und Biomarker
Stufe 3 der Medikamentenentwicklung ist die Durchführung klinischer Studien. Die Schwierigkeit hierbei ist, geeignete Testpersonen zu finden, was oft zu teuren Zeitverzögerungen führt. KI kann hier helfen, automatisch geeignete Testteilnehmer zu identifizieren und auf eine optimale Zusammenstellung der Gruppen von Studienteilnehmern achten.
Und nicht zuletzt kann KI die Entwicklung auch in der vierten und letzten Stufe unterstützen. Hier geht es um die Auffindung von Biomarkern für die Diagnose einer Krankheit. Biomarker sind Moleküle in Körperflüssigkeiten (in der Regel im menschlichen Blut), die mit Sicherheit anzeigen, ob ein Patient eine Krankheit hat oder nicht. KI-Systeme können wertvolle Dienste bei dieser oft zeitaufwändigen und kostspieligen Suche leisten.
Intensive Forschung für neue KI-Anwendungen
Die Entwicklung hat aber gerade erst begonnen. Weltweit arbeiten renomierte Forschungsinstitute daran, neue Anwendungen für KI in der Medizin zu entwickeln. In Deutschland ist insbesondere die Helmholtz-Gesellschaft auf diesem Gebiet sehr aktiv. So wird etwa gerade in Heidelberg und Karlsruhe die Helmholtz Information & Data Science School for Health (HIDSS4Health) auf- und ausgebaut. In München entsteht das Helmholtz Computational Health Center.
An der dortigen technischen Universität forscht Julia Schnabel, Professorin für Computational Imaging and AI in Medicine und Direktorin des Institute for Computational Imaging and AI in Medicine bei Helmholtz Munich, an mehreren Projekten. Unter anderem trainiert ihr Team eine KI, um die Plazenta bei schwangeren Frauen zu vermessen. Ist die Plazenta zu klein, kommt es zu einer Unterversorgung des Fetus, was oft aber erst sehr spät festgestellt wird. Das Team um Prof. Schnabel hat ein System aus mehreren Ultraschallsensoren entwickelt, das die Plazenta erkennen und ihre Größe bestimmen kann. „Dazu braucht der Computer sehr viele Ultraschallaufnahmen, in denen die Plazenta markiert ist. Die Daten von Ultraschallaufnahmen sind aber glücklicherweise leicht zu gewinnen: Es ist weder mit Risiken noch mit Umständen für die Patientinnen verbunden“, sagt Prof. Schnabel.

Neuronale Netze, das unbekannte Wesen
Ebenfalls beim Helmholtz Munich arbeitet der Physiker Carsten Marr mit seinem Team an der automatischen Erkennung von Blutkrebs – eine Aufgabe, die sonst Histologen stundenlang an das Mikroskop bindet. Marr verwendet für seine künstliche Intelligenz ein neuronales Netzwerk, das er mit Abertausenden von Bildern einzelner weißer Blutzellen und Informationen zum Zelltyp gefüttert hat. Man nennt diese Vorgehensweise „überwachtes Lernen“. Marrs Projekt liefert mittlerweile ähnlich gute Ergebnisse wie ein Histologe.
Das Problem hier: Das System ist eine Art Black Box. Es ist nicht offensichtlich, nach welchen Kriterien das neurale Netz entscheidet. Das versucht das Team gerade herauszufinden. „Es ist uns auch wichtig, den Entscheidungsprozess zu verstehen, um mögliche Fehler und ein Lernen in die falsche Richtung zu vermeiden“, sagt Marr.

Brauchen wir einen Datenspendeausweis?
Besonders in Deutschland gibt es aber einen veritablen Hemmschuh für die Entwicklung solcher Systeme: den Datenschutz. Denn es liegt auf der Hand: Um mit einer KI gute Ergebnisse zu erzielen, braucht man enorme Datenmengen. Und während diese in der bildgebenden Diagnostik reichlich vorhanden sind, fehlen sie in anderen medizinischen Bereichen – wie etwa in der Chirurgie. Dort werden die in Frage kommenden Daten meist gar nicht aufgezeichnet oder zumindest nicht permanent gespeichert. Doch selbst wenn Informationen vorliegen, sind sie aufgrund bürokratischer Hürden häufig nicht nutzbar. Prof. Lena Maier-Hein vom Deutschen Krebsforschungszentrum in Heidelberg schlägt deshalb vor, parallel zum Organspendeausweis einen Datenspendeausweis einzuführen. „Auf diese Weise könnte jeder Patient und jede Patientin letztlich helfen, die Chirurgie mittels künstlicher Intelligenz zu revolutionieren.“
Hi Wolfgang,
interessanter Beitrag. Ich frage mich, wann viele der Systeme auch real in den Einsatz kommen werden, denke aber, dass sich dabei in den nächsten fünf Jahren sehr viel tun wird.
LG,
David
Hi David,
vielen Dank für deinen Kommentar. Ich persönlich denke auch, dass wir erst am Anfang der Entwicklung stehen. Die Systeme werden immer besser und können immer mehr. Am Ende werden aber die Patienten entscheiden, wieviel Technik sie am Krankenbett akzeptieren.
Viele Grüße
Wolfgang
Hey Wolfgang,
sehr informativer Artikel! Ich studiere aktuell Informatik, habe letztes Semester mein Proseminar zum Thema KI gemacht und war auch echt beeindruckt, was man auf diesem Gebiet so machen kann. Dort habe ich mir auch einen Vortrag zu KI in der Medizin anhören können.
Gruß,
Lucas
Hallo Lucas,
es freut mich sehr, dass Dir mein Beitrag gefallen hat. Ich persönlich finde es auch sehr beeindruckend, was sich auf diesem Gebiet tut. Für mich wird aber auch immer deutlicher, dass die rechtlichen Rahmenbedingungen genauso wichtig sind, wie der technische Fortschritt. KI-Systeme können ohne Big Data nicht funktionieren und für die Nutzung dieser Daten muss es auch die gesetzlichen Grundlagen geben. Das gibt es aber bisher nur in Ansätzen. Leider.
Dir wünsche ich noch viele spannende Erkenntnisse bei Deinem Studium und natürlich weiterhin viel Spaß mit der „Intelligenten Welt“.
Liebe Grüße
Wolfgang